Part 1 is the review for Midterm 1. Review both! Remember, this exam is comprehensive. It will be approximately 40% on Part 1 and 60% on Part 2.

- 1. a) Determine the work done by a 20 Newton force directed $\frac{\pi}{4}$ radians above horizontal in pulling a sled 5 meters up a slope measuring $\frac{\pi}{6}$ radians above horizontal.
 - b) Determine the torque on a 4-meter rod attached at the origin (pivot point in the diagram) sloping at an angle of $\frac{\pi}{3}$ radians above horizontal by a force of 10 Newtons pulling on the end of the rod away from the origin straight down in the vertical direction.

- 2. a) Give the equation of the line through: $P_1 = (3, 1, -2)$ and $P_2 = (5, 0, 1)$ in these three forms: $\overrightarrow{PQ}=t\vec{v}$; Parametric form; and Symmetric form. P= either P_1 or P_2 and Q=(x,y,z)
 - b) Determine the distance from the point M = (5, 4, 2) to the line.
 - c) Determine the area of the triangle $\Delta P_1 P_2 M$
- Give the equation of the plane containing the given points, $P_1 = (2, 4, -1)$, $P_2 = (6, 2, 3)$, and 3. $P_3 = (4,0,7)$, in vector, scalar, and general form.
 - b) Determine the distance from the point P = (8, 2, -4) to the plane
- a) Given the 2-D vector-valued function, $\overrightarrow{d}(t) = (4t t^2, 6t 2t^2)$ for the displacement of an object 4. from the origin, graph \overrightarrow{d} (t) for $t \in \{0, 1, 2, 3, 4, 5\}$
 - b) Find $\overrightarrow{v}(t) = \overrightarrow{d}'(t)$. Graph $\overrightarrow{v}(t)$ for $t \in \{0, 1, 2, 3, 4, 5\}$ How do the directions of your $\overrightarrow{v}(t)$ vectors correspond to your graph of \overrightarrow{d} (t)?
 - c) Find $\overrightarrow{a}(t) = \overrightarrow{v}'(t)$. What does your answer imply?
- Given: $\overrightarrow{v}(t) = \langle 4 e^{\left(-\frac{t}{4}\right)} \cos\left(\frac{\pi}{4}t\right), 2 e^{\left(-\frac{t}{4}\right)} \sin\left(\frac{\pi}{4}t\right), \frac{3t}{t+2} \rangle$ 5.
 - a) Determine the limit: i) $\lim_{t\to 0} \overrightarrow{v}(t)$
- ii) $\lim_{t\to 4} \overrightarrow{v}(t)$
- iii) $\lim_{t\to\infty} \overrightarrow{v}(t)$

- b) Describe the graph.
- 6. Write the formula and the recursive definition of each sequence:
 - a) $\{a_n\} = \{5, 10, 20, 40, 80, \dots\}$
- b) $\{b_n\} = \{5, 8, 11, 14, 17, 20, \dots\}$
- c) $\{c_n\} = \{1, 3, 7, 15, 31, 63, ...\}$ recursive only d) $\{d_n\} = \{2, -1, \frac{1}{2}, -\frac{1}{4}, \frac{1}{8}, -\frac{1}{16}, ...\}$
- Make an educated/informed "guess" of the limit of the sequence $a_n = \frac{4n}{2n-1}$, i.e., $L = \lim_{n \to \infty} a_n$ 7.
 - a) Find $M \in \mathbb{N}$ (in terms of ε) such that $|a_n L| < \varepsilon \ \forall n > M$ Doing this proves $\lim_{n \to \infty} a_n = L$
 - b) Find $M \in \mathbb{N}$ such that $|a_n L| < \varepsilon \ \forall n > M$ for $\varepsilon = 0.1$ and $\varepsilon = 0.01$

- Make an educated/informed "guess" of the limit of the sequence $a_n = \frac{2n}{n^2+1}$, i.e., $L = \lim_{n \to \infty} a_n$ 8.
 - a) Find $M \in \mathbb{N}$ (in terms of ε) such that $|a_n L| < \varepsilon \ \ \forall n > M$ Doing this proves $\lim_{n \to \infty} a_n = L$
 - b) Find $M \in \mathbb{N}$ such that $|a_n L| < \varepsilon \ \forall n > M$ for $\varepsilon = 0.1$ and $\varepsilon = 0.01$
- a) If an infinite series, $\sum_{i=1}^{\infty} a_i$ converges, what can you say with certainty about the limit $L = \lim_{n \to \infty} a_n$? 9. Write your answer as an if/then statement, e.g., If A then B.
 - b) Is the converse of the statement in part a) above true? If not, provide an explanation or counterexample supporting your answer. The converse of "If A then B" is "If B then A."
- For each of the following series, apply Theorem 5.8, the "Divergence Test." Make sure to state the 10. conclusion accurately.
 - a) $\sum_{i=1}^{\infty} \left(\frac{3}{2}\right)^{i-1}$ b) $\sum_{n=1}^{\infty} 2^{-\frac{1}{n}}$ c) $\sum_{n=1}^{\infty} \frac{n^2}{e^n}$ d) $\sum_{n=1}^{\infty} \frac{n}{\ln n}$

- 11. a) Show $\sum_{i=1}^{n} r^{i-1} = \frac{1-r^n}{1-r}$ b) For what values of r will $\sum_{i=1}^{\infty} r^{i-1}$ have a limit?
- 12. a) Find the limit of $\sum_{i=1}^{\infty} 6\left(\frac{2}{3}\right)^{i-1}$ b) Find the limit of $\sum_{i=1}^{\infty} 6\left(-\frac{2}{3}\right)^{i-1}$

 - c) Which of the limits in parts a) and b) above is less? Why?
- a) Find the limit of $\sum_{i=1}^{\infty} 10 \left(\frac{2}{5}\right)^i$ 13.
- b) Find the limit of $\sum_{i=3}^{\infty} \left(\frac{1}{2}\right)^{i-1}$
- For each of the following p-series, apply Theorem 5.8, the "Divergence Test." If the "Divergence Test" is 14. inconclusive, apply the "Integral Test" to determine whether the given p-series converges or diverges.

 - a) $\sum_{i=1}^{\infty} \frac{1}{i^{-0.5}}$ b) $\sum_{i=1}^{\infty} \frac{1}{i^{0.5}}$ c) $\sum_{i=1}^{\infty} \frac{1}{i}$ d) $\sum_{i=1}^{\infty} \frac{1}{i^{1.1}}$

- Use the "Comparison Test" to determine if the given series converges or diverges. 15.
 - a) $\sum_{i=1}^{\infty} \frac{1}{\sqrt{i^3+3i}}$

b) $\sum_{i=1}^{\infty} \left(\frac{i}{2i+1}\right)^{i}$